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Laboratory experiments have shown that monopolar isolated vortices in a rotating
flow undergo instabilities that result in the formation of multipolar vortex states such
as dipoles and tripoles. In some cases the instability is entirely two-dimensional, with
the vortices taking the form of vortex columns aligned along the direction of the
ambient rotation at all times. In other cases, the vortex first passes through a highly
turbulent three-dimensional state before eventually reorganizing into vortex columns.
Through a series of three-dimensional numerical simulations, the roles that centrifugal
instability, barotropic instability, and the bottom Ekman boundary layer play in these
instabilities are investigated. Evidence is presented that the centrifugal instability can
trigger the barotropic instabilities by the enhancement of vorticity gradients. It is
shown that the bottom Ekman layer is not essential to these instabilities but can
strongly modify their evolution.

1. Introduction
Laboratory experiments on the evolution of isolated vortices in rotating flow have

provided many interesting examples of instabilities which lead to the formation of
stable multipolar vortices. The transformations of axially symmetric vortices into
tripoles and dipole pairs are impressive examples of this process (cf. Kloosterziel &
van Heijst 1991; van Heijst, Kloosterziel & Williams 1991). A complete theoretical
understanding of this phenomenon would require a fully three-dimensional instability
theory, but this is not at present available. However, much insight can be obtained by
considering the combined effect of barotropic (i.e. two-dimensional) instability and
centrifugal instability, which involves three-dimensional overturning of the fluid.

An important effect of rotation is that it tends to suppress variation of the flow
in the direction along the axis of rotation. In rotating tank experiments, this ‘two-
dimensionalization’ tends to make the vortices evolve toward columnar structures
aligned along the direction of the tank’s rotation axis. If a flow is completely two-
dimensional, then except for the direction of rotation, there can be no difference
between the evolution of cyclones and anticyclones, because in the equations of
two-dimensional advection there are no terms that can break this symmetry. The
effect of two-dimensionalization by rotation is commonly associated with the Taylor–
Proudman theorem. This theorem states that the variation along the direction of the
axis of rotation will vanish to the extent that, in the rotating reference frame, the flow
is stationary and nonlinear inertial effects can be neglected. In Carnevale et al. (1997a)
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we investigated how the columnar state is achieved from initially three-dimensional
vortices. This also involved studying the stability of nearly columnar vortices, and for
that we took vorticity profiles that were single signed and monotonically decreasing
as a function of the distance from the axis of the vortex. This monotonic type
of profile was chosen so as to avoid barotropic instabilities because we wanted to
focus on the three-dimensional centrifugal instability and two-dimensional stability
theory showed us that such flows are barotropically stable. The linear stability of
such vortices is given by the Rayleigh inflection point theorem (cf. Drazin & Reid
1981), and this is strengthened by nonlinear stability theorems of the Arnol’d type
(cf. Dritschel 1988; Carnevale & Shepherd 1990). However, isolated vortices cannot
have such a monotonic vorticity profile, and hence are subject to two-dimensional or
barotropic instabilities as well as the three-dimensional centrifugal instability. It is to
this problem of the combined effect of barotropic and centrifugal instability that we
now turn.

By an isolated vortex, we mean a vortex for which the velocity field falls off faster
than 1/r where r is the distance from the axis of the vortex. For a columnar vortex
this would mean that the circulation in any horizontal plane must vanish. Note that
we will refer to the direction aligned along the ambient rotation axis as ‘vertical’. An
idealization of the vortices created in the laboratory experiments is a vortex that is
axially symmetric with no variation in the vertical, with a core of one sign of vorticity
surrounded by an annulus of oppositely signed vorticity such that the integral of the
vorticity in all horizontal planes vanishes. The behaviour of this kind of vortex is very
different from that of the vortex with a single sign of vorticity. The latter vortices
do not undergo the barotropic type of instability that produces the multipolar end
states (cf. Kloosterziel & van Heijst 1991; Carnevale et al. 1997a). For the isolated
vortex the Rayleigh inflection point criterion is satisfied, and so a two-dimensional (i.e.
barotropic) instability is possible. Depending on the exact distribution of vorticity, the
isolated vortex will be unstable to normal modes of angular dependence proportional
to cos(nθ) where θ is the azimuthal angle in a cylindrical geometry and n is an integer.
In numerical simulations the linear instabilities can be shown to lead to the formation
of multipolar structures such as the tripole (n = 3), quadrapole (n = 4), pentapole
(n = 5) etc. in which a core vortex of one sign of vorticity is surrounded by satellite
vortices of the opposite sign (cf. Carnevale & Kloosterziel 1994; Morel & Carton
1994). Most of these structures are unstable and typically break up into dipoles and
monopoles. A notable exception is the tripole which is very stable (Carton & Legras
1994) and is readily produced in rotating tank experiments (van Heijst & Kloosterziel
1989). The quadrupole is less robust, but appears stable in numerical simulations and
has been created as a metastable state in rotating tank experiments (Kloosterziel &
van Heijst 1991; Carnevale & Kloosterziel 1994). We will discuss these structures in
more detail in later sections.

The laboratory set up used in Kloosterziel & van Heijst (1991, 1992) and van
Heijst et al. (1991) consists of a rotating table on which is placed a cylindrical
tank. Rotation combined with the bottom boundary and the free surface of the
fluid tends to diminish motion in the vertical direction throughout the tank. Thus
the rotation, if sufficiently strong, permits us to perform experiments which are
essentially two-dimensional, that is with no variation in the vertical, and hence to
study purely barotropic instabilities. The initial condition in these experiments was
prepared by stirring in a hollow cylinder placed in the centre of the tank. By stirring
in the direction of the rotation of the tank, or in the opposite direction, one can
smoothly create a confined cyclone or anticyclone respectively. Once the motion in
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the confining cylinder becomes fairly two-dimensional, the hollow cylinder is removed
vertically, leaving behind an isolated vortex, whose subsequent evolution is observed.
On removing the hollow inner cylinder, some three-dimensional motion is generated,
which, when the vortex is centrifugally unstable, can become very vigorous. There is
usually then a transitory turbulent period before the flow returns to a two-dimensional
state.

One of the most intriguing facets of this research is the asymmetry between
the cyclones and anticyclones. If the strength of the vortices is sufficiently weak,
then, by the Taylor–Proudman theorem (cf. Pedlosky 1979), we can expect little
difference between cyclones and anticyclones. However, for stronger amplitudes, their
behaviours can be very different. In the laboratory experiments reported in the current
literature, it was found that tripoles could easily be generated from cyclones, but not
from anticyclones. The anticyclones instead would break into dipole pairs (‘double-
dipole instability’), sometimes after first forming intermediate tripolar or quadrupolar
structures (cf. Kloosterziel & van Heijst 1991; van Heijst et al. 1991; Orlandi & van
Heijst 1992; Carnevale & Kloosterziel 1994). In contrast, the double-dipole instability
for a cyclone could be produced experimentally in only one very special case (van
Heijst et al. 1991). For that case, the authors of the study concluded that the core
cyclonic vortex was initially produced in such a way as to have a vorticity profile that
was itself barotropically unstable.

Previous investigations have led to two important hypotheses that may help explain
the asymmetry in behaviour between the cyclones and anticyclones. It was obvious in
the experiments that when the anticyclones were released, they underwent centrifugal
instability (cf. Kloosterziel & van Heijst 1991), and it was only after a period of
decay of the resulting three-dimensional turbulence that two-dimensional columnar
structures re-emerged. The cyclones, on the other hand, suffered only a small amount
of three-dimensional disturbance by the removal of the confining cylinder, and re-
mained predominantly two-dimensional at all times. Kloosterziel & van Heijst (1991)
suggested that the centrifugal instability might in some way prevent the flow from
achieving the right conditions for tripole formation and that the lack of the centrifu-
gal instability in the cyclonic case somehow precludes the double-dipole instability
(in all cases in which the core cyclonic vortex itself is not barotropically unstable).
Alternatively, Kloosterziel & van Heijst (1991) suggested that within the confining
cylinder, the action of a bottom Ekman layer generates vorticity in such a way as
to favour the double-dipole instability for the anticyclone and the tripole instability
for the cyclone. This seemed plausible because the strength of Ekman layer pumping
is not simply proportional to the amplitude of the vorticity, but depends on it in
a nonlinear way (Wedemeyer 1964), which means that Ekman pumping can change
the profile of the vorticity. In an attempt to determine the importance of the Ekman
layer effect in their experiments, Kloosterziel & van Heijst (1992) performed a series
of experiments in which the effects of the bottom boundary layer were minimized
by introducing a thin layer of fluid denser than the main layer at the bottom of
the tank. In this case it seems the cyclones were stable, leading to the speculation
that the instability of the cyclones relied on the Ekman effect, although effects of the
deformation of the surface between the two layers clouds the interpretation of the
result.

Our main goal here is to investigate these and subsidiary hypotheses about the
effects of the centrifugal instability and the Ekman layer to determine their validity
in explaining the behaviour of vortices in a rotating environment. Our investigation
primarily involves a series of three-dimensional numerical experiments on flows with
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differing boundary conditions, with which we can explore these phenomena more
carefully than was possible in the laboratory experiments described above. In the
laboratory experiments, with the stirring method discussed above, it was difficult to
know the initial strength and vorticity profile of the vortices relative to the background
(i.e. the initial Rossby number). In some cases, the strength and even the horizontal
velocity field was measured and reported, but, especially in the centrifugally unstable
anticyclone cases, this information is usually lacking. In contrast, in the numerical
simulations, we have control over the initial conditions and have been able to examine
a number of cases spanning a large range of Rossby numbers. One of the more
difficult fields to measure in the laboratory is the vorticity field of the flow. Estimates
of the vertical vorticity at the surface of the flow have been made in some cases
from measurements of the velocities of particles dispersed on the surface, but these
estimates seem very inaccurate. Also there are no measurements of the horizontal
components of vorticity, which are essential to understanding the effects of centrifugal
instability, anywhere in the flow. The original purpose of the laboratory experiments
was the examination of the two-dimensional dynamics of vortices. Thus there was
no-visualization and very little other information on the three-dimensional structure
of the vortices. One great advantage of the numerical simulations is the ability to
examine all components of the vorticity field at all times during the evolution.

Further, in the numerical simulations we can change the bottom boundary condition
so as to include or exclude the effects of the Ekman layer. Thus we have performed
simulations with periodic and slip boundary conditions which exclude the Ekman
layer to test hypotheses about its importance in the experiments without introducing
the complications of a bottom layer of different density as in the laboratory. For
the simulations with a no-slip bottom boundary condition, we introduced a variable
mesh so that we could resolve the Ekman layer well. It was important to examine
the Ekman effect for a wide range of Rossby numbers, because there was ambiguity
about the initial Rossby numbers in many of the laboratory experiments and because
only at very low Rossby number is there a good theoretical understanding of the
structure of the Ekman layer, while many of the experiments have been performed
with high Rossby numbers where we have no guiding theory.

In the next section, we will discuss some fundamental considerations concerning
pure barotropic and pure centrifugal instability that will be important in interpreting
the results for the laboratory experiments and numerical simulations. Then in §3,
we will consider various aspects of the numerical simulations without Ekman-layer
effects. In §4, we will show the results of three-dimensional flow simulations that
resolve the Ekman layer.

2. Fundamental aspects of the barotropic and centrifugal instabilities
Barotropic instability of isolated vortices has been the subject of a number of

studies. A useful model for the vorticity of a vortex of limited horizontal extent that
has been used in several studies (cf. Carton, Flierl & Polvani 1989; Orlandi & van
Heijst 1992; Carnevale & Kloosterziel 1994) is given by

ωz = ω0(1− 1
2
αρα)e−ρ

α

, (2.1)

where ωz is the vorticity relative to the background ambient rotation, and ω0 is the
amplitude of the vortex at r = 0. Also ρ = r/(

√
2σ) with σ defining a horizontal

length scale of the vortex. Throughout the paper, we will use a cylindrical coordinate
system with independent spatial variables denoted by r, θ and z, with the background
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rotation vector Ω = Ωẑ aligned either parallel or antiparallel to the z-axis depending
on the sign of Ω. The profile (2.1) is a convenient choice since, by adjusting the
steepness exponent α, it can be easily fitted to a wide variety of vorticity profiles
observed in nature and in the laboratory experiments. It is an isolated profile in the
sense that the circulation or total vorticity integrated over the plane vanishes. This
means that the associated velocity field will fall off more rapidly than 1/r in the far
field. Specifically, for this profile we have

vθ = 1
2
ω0re

−ρα . (2.2)

Note that the vorticity ωz changes sign at the radius given by

r = r× =
√

2σ

[
2

α

]1/α

. (2.3)

Having introduced the basic profile (2.1), we can now define precisely the important
non-dimensional numbers for our problem. We define the Reynolds number as

Re =
ω0σ

2

ν
, (2.4)

where ν is the kinematic velocity. The rotation number is defined by

N =
2Ω

ω0

. (2.5)

We will take ω0 to be positive always, and Ω to be a signed quantity so that N > 0
refers to a cyclone and N < 0 to an anticyclone. Here we are using rotation number
N instead of the Rossby number Ro = 1/|N| since this will simplify much of the
discussion. In addition to these two non-dimensional numbers, we will have occasion
to refer to two important time scales, the advective and the Ekman time scales. The
advective time scale is given by

ta =
1

ω0

, (2.6)

and the Ekman time scale by

tE =
D

(νΩ)1/2
, (2.7)

where D is the depth of the fluid, that is the size of the computational domain in
the vertical direction. The aspect ratio σ/D will be taken to be 1/π in all three-
dimensional simulations presented below. The aspect ratios used in the laboratory
experiments cited above vary from about 0.2 to 3, but it is beyond the scope of the
present work to consider such a wide range of aspect ratios. Except where explicitly
stated otherwise, numerical values of all physical quantities will be given with time
scales in units of ta and length scales in units of σ.

In figure 1, we show the results from a two-dimensional numerical linear stability
analysis of the vorticity profile given in (2.1). The growth rates were computed by
numerical simulation of the evolution of the vorticity field linearized about the profile
given in equation (2.1). The instability was initiated by adding a small perturbation
with azimuthal dependence given by cos(nθ) with n a positive integer (for details see
Carnevale & Kloosterziel 1994). The graph shows that for small values of α the profile
is linearly stable. For α greater than about 1.85 the profile is unstable to mode n = 2
perturbations. For successively higher values of α, higher-order modes are unstable. In
other words, the ‘steeper’ the profile, the larger the number of modes that can grow.
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Figure 1. Growth rates γ for the barotropically unstable modes n = 2, 3, 4 versus the steepness
parameter α.

This graph for the n = 2 mode is similar to that found by Carton & McWilliams
(1989) except that they found anomalously high values of the growth rate for mode
2 near α = 2. We believe the discrepancy is a matter of the resolution used in the
determination of the stability. For azimuthal mode n = 2, we used numerical grids
of both 642 and 1282 points. At the lower resolution our results reproduced those in
the Carton & McWilliams (1989) graph. The results shown in figure 1 for n = 2 are
from the higher resolution calculation and these do not show the anomalously high
growth rates obtained from the lower resolution calculation. For n = 3 and n = 4 the
results presented are from the simulations with the 642 grid, which is adequate for
current purposes.

From a given initial condition, the early evolution of the vortex is not necessarily
dominated by the fastest growing mode for a given α. The early evolution may be
a complicated combination of the evolution of many modes depending the initial
amplitude of each mode. If the evolution were purely linear, then the mode with
the largest growth rate would eventually dominate. In the actual evolution, however,
nonlinear effects eventually cause the linear instability to cease or saturate. The
resulting long-term evolution then can be highly dependent on the precise form of
the initial condition. For example, for a high value of α (e.g. α = 6), a random
perturbation of the initial condition may eventually result in the formation of two
dipole pairs or a stable quadrupole structure (cf. Carnevale & Kloosterziel 1994).

A particularly relevant set of two-dimensional numerical experiments consists of
initializing the flow with a mode n = 2 perturbation to the basic profile. For α less than
approximately 1.85 the vortex remains nearly circular and no instability is observed.
For larger values of α up to about α = 3.25, the outer annulus becomes unstable
forming two satellites co-linear with the core. This is a stable tripole (cf. Legras,
Santangelo, Benzi 1988; Carton et al. 1989; van Heijst et al. 1991; Kloosterziel & van
Heijst 1991). For even larger values of α, although it appears that a tripole begins to
form, this is only an intermediate state. The core is eventually sheared in two by the
action of the satellites, and the whole structure breaks into a pair of stable dipoles
propagating away from each other.

Thus if we could ignore the three-dimensional aspects of this problem, the outcome
of a particular instability would depend on the nature of the initial perturbation
and the size of α. In other words, save for direction of rotation, there would be no
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difference in how cyclones and anticyclones evolve. The evolution would depend only
on what unstable modes are initially excited and with what amplitudes. For example,
if we excite a mode-2 perturbation on a basic profile with α = 3, we would observe
stable tripole formation for both cyclones and anticyclones. From the point view of
two-dimensional theory, the asymmetry between cyclones and anticyclones could only
be in the preparation of the initial condition.

In contrast to the purely two-dimensional barotropic instabilities, the centrifugal
instability is inherently three-dimensional. Rayleigh investigated the centrifugal insta-
bility considering only axisymmetric motions. Under that condition, he showed that
the flow is unstable if the gradient of the magnitude of the angular momentum is
negative somewhere in the vortex. In a rotating flow, this criterion can be written in
terms of the azimuthal velocity vθ and vertical vorticity ωz as (cf. Kloosterziel & Van
Heijst 1991)

(vθ + rΩ)(ωz + 2Ω) < 0, (2.8)

where Ω is the angular rotation rate of the environment. The left-hand side of
inequality (2.8) is proportional to and has the same sign as a quantity traditionally
called the Rayleigh discriminant. The inequality is a sufficient condition for linear
instability due to three-dimensional overturning motions. It is strictly valid only in
the case where motions are artificially restricted to being axisymmetric. Nevertheless,
the inequality (2.8) has proven to be a reliable indicator of centrifugal instability in a
variety of cases where this restriction is relaxed (cf. Smythe & Peltier 1994; Carnevale
et al. 1997a).

By substituting the formulas for ωz and vθ from our basic profile into the criterion
for instability, we obtain the following explicit criterion for this isolated vortex:

[e−ρ
α

+N][(1− 1
2
αρα)e−ρ

α

+N] < 0, (2.9)

where, for given values of N and α, inequality (2.9) determines the values of r
for which instability is possible. By examining the behaviour of the two factors in
square brackets, we find that the instability criterion can only be satisfied for rotation
numbers satisfying −1 < N < Ncr where

Ncr = 1
2
α exp

(
−α+ 2

α

)
. (2.10)

This is very different from the case of the single-signed, Gaussian vorticity profile,
ωz = ω0 exp(−r2/2σ2), which is unstable only for sufficiently strong anticyclones (i.e.
−1 < N < 0; cf. Carnevale et al. 1997a and references therein). For the isolated vortex
case, even cyclones can be centrifugally unstable if the rotation number is sufficiently
low (cf. Kloosterziel & van Heijst 1991). For sufficiently high rotation numbers,
both cyclones and anticyclones will be centrifugally stable, and, for sufficiently high
rotation number, both cyclones and anticyclones will behave similarly as noted in the
introduction.

For a given rotation number and steepness such that the flow is unstable, the
formula (2.9) also predicts the physical region of instability. This is shown in figure
2 where we plot both the inner and outer radii of the instability region, r− and r+,
respectively, as functions of N for α = 2, 3 and 5. For N = 0, the inner radius of
the instability region coincides with r×, where the vorticity changes sign, and the
outer radius of the instability region is infinite. As N increases or decreases toward
the stability boundaries for any α, the radial extent of the instability region shrinks.
For anticyclones the region of instability moves toward the centre of the vortex as
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Figure 2. Radial positions where the sign of the left-hand side of equation (2.8) changes sign
( , α = 2; , α = 3; , α = 5).

N → −1, while for cyclones the inner radius of the instability region increases as N
increases. Thus, for cyclones the region of instability for the profile (2.1) is always
outside the core of the vortex.

We can also examine formula (2.9) analytically in the vicinity of the values N =
−1, 0 and Ncr to obtain approximate values r− < r+ for the limits on the region of
instability. For N = 0 the value of r+ diverges while r− = r×. This is the case without
rotation and we see that the vortex is centrifugally unstable except in the inner core
of radius r− = r×. Near N = 0 we can write

r− ∼
√

2σ

[
2

α
(1 +Ne2/α

]1/α

, (2.11)

while for r+ the results differ depending on the sign of N. We have

r+ ∼ √2σ

[
− ln

(
2N

α ln(1/N)

)]1/α

for N & 0. (2.12)

and

r+ ∼ √2σ[− ln(−N)]1/α for N . 0. (2.13)

For N & −1 we have

r− ∼ √2σ

[
2

2 + α
(1 +N)

]1/α

(2.14)

and

r+ ∼ √2σ[− ln(−N)]1/α. (2.15)

Finally, for N . Ncr we have

r± ∼ √2σ

[
2 + α

α
±
(

2

(
1− N

Ncr

))1/2
]1/α

. (2.16)

Although a complete analytical theory of the linear instability of isolated vor-
tices in rotating flow is not available, we can try to combine the above ideas of
two-dimensional or barotropic instability with centrifugal instability to attempt to



Evolution of isolated vortices in a rotating flow 247

10–5

0 100 200 300

t

;
v r;

m
ax

10–4

10–3

10–2

10–1

Figure 3. History of |vr|max for two-dimensional simulations at different Reynolds numbers ( ,
Re = 100; , Re = 400; , Re = 700; , Re = 1000; , Re = 1250; · · · ·,
Re = 2500).

understand the wide variety of results on the evolution of isolated vortices obtained
in the laboratory and numerical simulations.

3. Numerical simulations without Ekman effects
We have performed numerical simulations of the evolution of isolated vortices

subject to three different kinds of boundary conditions. The simulations are performed
with a finite difference code that solves the Navier–Stokes equations in cylindrical
coordinates. The code is described in detail in Verzicco & Orlandi (1996). The
versatility of the code has been demonstrated by application to several different
physical cases. For example, it has been applied in the investigation of Taylor stratified
flows by Hua, Le Gentil & Orlandi (1997), baroclinic and barotropic instabilities by
Verzicco, Lalli & Campana (1997), natural convection in metals by Verzicco &
Camussi (1997), and flow in rotating turbulent pipes by Orlandi & Fatica (1997).
For our simulations, the axis of the cylindrical coordinates coincides with the axis of
rotation. The boundary on the sidewalls is kept as free-slip in all of the simulations
presented here. At the top and bottom of the domain, we have the option of choosing
periodic, free-slip or no-slip conditions. Periodic boundary conditions are useful for
testing the predictions based on two-dimensional results and the centrifugal instability
theory discussed above. We will see that the results using slip boundary conditions on
the top and bottom are very similar to the periodic boundary condition case. The most
relevant choice of boundary conditions with regard to the laboratory experiments has
a no-slip condition on the bottom boundary and a free-slip condition on the top
boundary. As we shall see in §4, the presence of the no-slip bottom causes an Ekman
layer to form on the bottom, and this greatly increases the complexity of the flow.

3.1. Two-dimensional simulations

Since the barotropic instability is an inviscid instability, it is important to know at
what level of viscous dissipation the development of the instability will be arrested.
To obtain some quantitative measure of the size of the Reynolds number below
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which we would not expect to see the barotropic instability, we performed a series
of two-dimensional simulations by running our three-dimensional code with only one
grid point in the vertical. The initial axial vorticity ωz(r) was perturbed by adding
some noise to the scaled radius ρ. Specifically, in the formula (2.1), ρ is replaced by
ρ∗ given by

ρ∗ = ρ+ 0.25η exp(−4(αρα − 2)2), (3.1)

where η(r, θ, z) is a different random number for each point in the computational
domain and is distributed between 0 and 1. The velocity field is then obtained
by integration and application of the continuity equation. The exponential term in
equation (3.1) causes the perturbation to have its maximum effect at the radial location
where the main vorticity changes sign. Thus the perturbation involves both part of
the core and part of the outer annulus. For example, with α = 3, the perturbation to ρ
peaks at r× ≈ 1.2 and falls to the 10% level at r ≈ 1 and r ≈ 1.4. In previous studies,
perturbing near the boundary between the core and the annulus was found useful in
exciting the barotropic instabilities observed in the lab (cf. Carnevale & Kloosterziel
1994; Orlandi & van Heijst 1992), and so we have adopted this method here as well.

Note that with this disturbance, typically, no single azimuthal mode dominates
(in contrast to the disturbances imposed by Carnevale & Kloosterziel 1994 who
investigated the effects of preferentially exciting specific azimuthal modes). The r.m.s.
amplitude of η here is set equal to 0.025. For the periodic boundary condition
simulations that we discuss, the value of α was 3. According to figure 1, the most
unstable mode is then n = 2 and a tripole is expected to form. As a measure of
deviation from the circularly symmetric state, we can use the radial velocity vr , which
would remain zero if the vortex remained circularly symmetric. From the evolution of
the maximum of vr we can determine the Reynolds number at which the azimuthal
instability can occur in spite of the presence of viscosity. Figure 3 shows that, as
expected, the random perturbation initially decays to select the most unstable mode.
In other words, there are many components of the initial perturbation that are
not unstable, and these decay producing in the early evolution a net decay of the
maximum vr . Meanwhile the unstable modes grow and eventually dominate the signal
if they are not first overcome by viscous effects. Thus, depending on the value of
Re, the maximum vr will either continue to decay from its initial value or begin to
grow at a certain point due to the barotropic instability. In the long run, viscous
effects will cause the signal to eventually decay as all motion must decay away. From
these simulations, we found that for Re < 500 tripole formation is suppressed. For
such low Reynolds numbers, only weak side lobes form during the evolution and the
structure remains nearly circularly symmetric. For Re > 1000, strong tripoles emerge
with well-defined side lobes, and, therefore, in this regime, horizontal diffusion due
to viscosity should play little role in suppressing the two-dimensional instabilities.
All of the three-dimensional simulations that we discuss below were performed with
an initial Reynolds number of 2500, which is in the range typically found in the
laboratory experiments discussed above.

3.2. Three-dimensional simulations with periodic boundary conditions

Three-dimensional simulations in which the boundary conditions in the z-direction
are periodic allow us to look at the combined effects of the centrifugal instability and
the barotropic instability without including complications of the bottom boundary
layer. We will reserve the discussion of the effects of the viscous boundary layer for
the next section.
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Figure 4. History of |ωθ|max for three-dimensional simulations with periodicity in z for (a) anti-
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, N = −1.0); (b) cyclones ( , N = 0.05; , N = 0.1; · · ·, N = 0.175; , N = 1
3
;

, N = 0.5; , N = 1.0). The values of N for each curve are also indicated in the figures.

To see whether the three-dimensional simulations capture the stability limit for
centrifugal instability, we have performed a series of simulations with N ranging
in value from −2 to +2 with the initial profile corresponding to α = 3. If present,
centrifugal instability should amplify our initial three-dimensional perturbation. As a
measure of the three-dimensional overturning motions, we have plotted in figure 4, the
maximum of |ωθ| as a function of time. In figures 4(a) and 4(b), we see the results for
the anticyclones and cyclones respectively. Each graph shows how the maximum |ωθ|
evolves in time for different values of N. Let us consider the anticyclonic case (figure
4 a) first. Centrifugal instability is predicted for all values of N in the range (−1, 0). In
all cases shown on the graph, the maximum value of |ωθ| decreases initially. If there
are growing modes, then their contribution to |ωθ|max will eventually dominate over
the contribution of the decaying modes. This appears to happen in the cases with
N = − 1

10
,− 1

3
,− 1

2
, and − 2

3
. We also note that after a period of exponential growth,

there is a long slow decay which is due to viscous decay. The unexpected result is
that there seems to be no period of exponential growth for the case N = −0.75.
We see that as N increases, the time of onset of the growth of |ωθ|max increases and
the maximum value of |ωθ|max that is achieved decreases. Thus it may be that the
instability corresponding to N = −0.75 will only be evident after a time t = 200. On
the other hand, it may be that for this N the centrifugal instability is damped and
prevented from occurring by viscous decay. Also we can note from figure 2 that as
one moves from N = 0 toward N = −1, the radial width of the instability regime
shrinks and the centre of the regime moves toward the centre of the vortex. Since the
initial perturbation is concentrated near the boundary between the vortex and the
core, this means that the perturbation will be less effective in initiating the instability
as N → −1.

Turning next to the cyclonic case, we see a period of exponential growth for the
cases N = 0.05, 0.10 and 0.175. While for N > 0.33, there is just decay. This is in
accord with the critical value of N being 0.28 for the cyclones with α = 3 (see equation
(2.10)).

To better understand the nature of the centrifugal instability, we can plot contours
of ωθ in a vertical (r, z) cross-section for a given angle θ. Here we choose θ such that
the cross-sectional plane passes through the point where ωz takes its most negative
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(a) (b)

(c)

(d) (e)

Figure 5. Contours of ωθ in vertical sections that pass through the point where ωz takes its lowest
value. (a) N = −0.5, t = 100, (b) N = −1/3, t = 50, (c) N = −0.1, t = 50, (d) N = +0.1, t = 50, (e)
N = +0.175, t = 100; , ωθ > 0; , ωθ < 0 (a,b,d,e: contour level increment ∆ωθ = 0.05);
(c: ∆ωθ = 0.2). The dotted lines are those where the left-hand side of inequality (2.8) vanishes. The
dashed line simply indicates one end of the computational domain.

value. Such cross-sections are shown in figure 5 for a representative sample of the
centrifugally unstable cases. In addition to the contour levels of ωθ , we have also
indicated with dotted lines the region where the Rayleigh discriminant is negative
(see equation (2.8)). For axially symmetric flows, it is in this region that linear theory
allows instability. During the nonlinear evolution of the vortex, this region is distorted
from the initial axially symmetric annulus and the Rayleigh criterion can no longer
be expected to define the region of instability perfectly. Nevertheless, even at the
relatively late times shown, we see that the most intense three-dimensional activity
does occur within the region of the negative Rayleigh discriminant. Note that in the
N = 0.10 case, we see that the instability seems to be mainly near the inner edge of
the negative Rayleigh discriminant region. This recalls the finding for non-isolated
vortices (Carnevale et al. 1997a) that the centrifugal instability begins near the inner
edge of the instability region and spreads out from there.

The early form of the instability appears to involve the formation of a series of
coaxial vortex rings that encircle the core of the primary vortex. The values of ωθ
in these rings alternate in sign as one goes from one ring to the next in the vertical
direction. These vortical structures are reminiscent of the ‘rib’ vortices in mixing layers,
where they tend to be generated in the region of maximum shear. The vortex tilting
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(a) (b)

(c) (d )

Figure 6. Contours of ωz in vertical sections that pass through the point where ωz takes its most
negative value (a) t = 50, (b) t = 100, (c) t = 150, and (d) t = 200 (N = −1/3, α = 3; ∆ωz = 0.05;

, positive values; , negative).

term in the vorticity equations is responsible for the generation of such structures
(Cantwell 1981; Libby 1996).

An important effect of the centrifugal instability is the steepening of vorticity
gradients. This appears to be due to the advection of fluid by the ‘rib’ vortices. The
effect can be understood by considering the flow around any pair of counter-rotating
vortices. Between such a pair of rib vortices fluid is advected either toward or away
from the core, depending on whether the vortex on top of the given pair has positive
or negative ωθ . For example, consider a pair of adjacent rib vortices that form rings
around the axial core of the primary vertically-aligned vortex. If the upper/lower rib
vortex has positive/negative ωθ , then in between the two rib vortices there is a flow
toward the core of the primary vortex. Furthermore, in the region on the side of the
rib vortices closest to the axis of the primary vortex, there is an induced relative flow
that locally tends to stretch and so enhance the vertical vorticity of the primary vortex.
If we consider a rib vortex pair with the upper/lower vortex having negative/positive
ωθ , then it is the side of the vortices farthest from the axis of the primary vortex
where stretching of the vertical vorticity of the primary vortex is induced. This creates
regions of greatly enhanced vorticity gradients.

An example of the effect of vortex stretching by the rib vortices can be seen in
figure 6(a) (representing time t = 50), which shows a contour plot of ωz in vertical
cross-section for the case N = − 1

3
. By measuring the radial profile of vθ averaged

over θ and z, we have found that the profile has become steeper than the critical
α = 3.25 profile, which is the profile that divides the regime of tripole formation into a
region of stable tripole formation and unstable tripole formation based on pure two-
dimensional evolution. Hence, this steepening of gradients can trigger the formation of
an unstable tripole. By time t = 100 (figure 6 b), the variability in ωz has spread both
toward and away from the centre of the vortex, penetrating well within the core of the
vortex. Even at this time the enhancement of vorticity gradients in front of advancing
ring pairs is still visible; however, as we can see from figure 4(a), decay of the three-
dimensionality of the structure has begun. Then the three-dimensional variability
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in the ωz field decreases with the vorticity field becoming increasingly columnar.
The barotropic instability that the structure undergoes produces an unstable tripolar
structure, whose cores can be seen in figure 6(d), but it is easier to see this in a
horizontal cross-section which we shall turn to now.

In figure 7(c), we see the evolution of the tripolar structure, for N = − 1
3
, in

horizontal cross-sections of the ωz field. At t = 100 the gradient of vorticity has
become relatively strong in a narrow band. By t = 150, there is the formation of a
transitory quadrupole state which typically occurs only for profiles significantly steeper
than the α = 3 profile, so that at least azimuthal modes n = 2 and n = 3 are unstable
as we saw in figure 1 (cf. Orlandi & van Heijst 1992; Carnevale & Kloosterziel
1994). In two-dimensional simulations, a symmetric form of the quadrupole seems
to be stable to sufficiently small perturbations (Carnevale & Kloosterziel 1994), but
in the laboratory or in these three-dimensional simulations, the quadrupole has been
observed only as an unstable intermediate state. Also, as observed in the laboratory
and two-dimensional simulations, this intermediate state becomes a tripole by the
merger of two of the cyclonic satellites. This is the tripole that was shown in vertical
cross-section in figure 6(d). This tripole is unstable. The instability proceeds by the
shearing apart of the core anticyclonic vortex by the two cyclonic satellites. The
anticyclone then rolls up into two vortices that pair with the satellites forming
the two dipoles that propagate away from each other as shown in figure 8, which
corresponds to time t = 400. This is the ‘double-dipole’ instability that occurs for a
pure barotropic mode 2 instability with α > 3.25.

An example of the double-dipole instability for a centrifugally unstable anticyclone
is shown in Kloosterziel & van Heijst (1991). Much of the three-dimensional visual-
ization of the instability of vortices in a rotating tank has been accomplished by
recording the images of a distribution of dye that is initially concentrated where the
vortex is created. Numerically, it is difficult to follow the details of the dye distributions
as used in the laboratory because the diffusivity of dye is very small – the diffusivity of
typical dyes is three orders of magnitude smaller than kinetic viscosity in water. The
small diffusivity means that the flow field can create filaments of dye much finer than
those of the more rapidly diffusing vorticity. When the thickness of such filaments
becomes comparable to the grid size of the computational domain, the simulation
is no longer valid. To avoid this problem we are forced to use a passive tracer
diffusivity that is much larger than the corresponding dye diffusivity. Nevertheless,
our simulations of passive tracer evolution do capture many of the features of the
evolution of the dye field as observed in the laboratory, at least for the short time
scales relevant here. An example of this is shown in figure 8, where, in addition
to isovortical contours of the vorticity field, we have also shown isoconcentration
lines of a field of passive tracer that was simulated along with the evolution of the
vorticity field. The initial passive tracer was distributed with intensity proportional
to the magnitude of the initial vorticity field. Even though we set the passive scalar
diffusivity equal to that of the viscosity, the tracer pattern in figure 8 is similar to
the dye results observed in the laboratory for this instability, and, in particular, we
note the typically observed filament of dye curved around the front of each of the
propagating dipoles.

In figure 7, we have also plotted the evolution of ωz in horizontal cross-section
for other values of N illustrating a transition for anticyclones from barotropic stable
tripole formation to complete destruction of the vortex by centrifugal instability.
The cross-sections are shown for times t = 100, 150 and 200. We have not shown
the case N = 0 (i.e. no rotation) because at the Reynolds number that we are
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Figure 7. Contours of ωz on horizontal planes at mid-height (∆ωz = 0.05). From left to right (a) N = −2/3, (b) N = −1/2, (c) N = −1/3 , (d)
N = −1/10. From top to bottom t = 100, t = 150, t = 200 (α = 3).
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(a) (b)

Figure 8. Double-dipole formation for N = −1/3 with α = 3 at t = 400. (a) Contour levels of ωz
with ∆ωz = 0.01; (b) isolines of passive scalar concentration.

using here, we did not have sufficient resolution to follow the evolution of that
case, which generates very small scales of motion, beyond time t = 50. The eventual
outcome of centrifugal instability in that case will be isotropic three-dimensional
turbulence. All of the anticyclones illustrated in figure 7, should be unstable to three-
dimensional overturning motions according to the instability criterion (−1 < N 6 0)
for centrifugal instability discussed above. In figure 7(a) (N = −0.67) is an example of
the two-dimensional or barotropic instability that saturates in the form of a tripole.
There is no evidence of any effects from small-scale three-dimensional motions even
though there is a period of growth of such motion as indicated in figure 4(a), since
the amplitudes of the three-dimensional motions always remain insignificant, with
|ωθ|max never rising above its initial value. The case N = −0.50 (figure 7 b) shows
some small-scale variability and an enhancement of the vorticity gradient between the
core and the annulus, which as we suggested before is probably due to the advection
by the ‘rib’ vortices. The steepening of the profile here was not sufficient to disrupt
the formation of the tripole, which appears stable at time t = 200. By decreasing the
magnitude of N further, we can increase the effect of the centrifugal instability as is
suggested by figure 7(c) for the case N = − 1

3
. In this case, by time t = 100, there has

been substantial steepening of the vorticity gradients as we discussed above. Next, in
figure 7(d), we have an example at N = −0.10 in which the centrifugal instability is
so vigorous that the coherent part of any simple barotropic instability is completely
obscured. Note that the instability completely engulfs the core of the vortex.

We turn now to figure 9 with the results from the simulations of the evolution
of the cyclones. We expect centrifugal instability for 0 < N < Ncr where, for α = 3,
Ncr ≈ 0.28 (see (2.10)). In figure 9(a), showing the evolution for N = 0.10, the effect
of the centrifugal instability shows up most strongly in the disruption of the negative-
vorticity annulus. Figure 2 demonstrates that as the value of N increases the region
of instability becomes narrower and shifts away from the core. From formula (2.3),
it follows that the vorticity in our profile changes sign at r ≈ 1.2σ; for α = 3 and
N = 0.1, we can deduce from figure 2, or from the approximate formula (2.11), that
the instability regime will start at a radius beyond this value. Thus the instability
band in this case is entirely contained in the outer annulus, and this is verified by
the simulation shown in figure 9(a). The disruption and subsequent diffusion of the
annulus of negative vorticity by centrifugal instability results in a stable monopolar
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(a) (b) (c)

Figure 9. Contours of ωz on mid-height planes (∆ωz = 0.05); (a) N = +1/10, (b) N = +0.175,
(c) N = +1/3. From top to bottom t = 100, t = 150, t = 200 (α = 3).

vortex. This is in strong contrast to the effect of the centrifugal instability for the
anticyclones, where we found the rib vortices enhanced the vorticity gradients. It is
also very different from the anticyclonic case at N = −0.1 where we saw the complete
disruption of the annulus and the core. Here for N = 0.1 the core is well preserved.
The rib vortices do not penetrate into the core, and the centrifugal instability tends
to make the vortex profile shallower. Comparison with the ideal profile (2.1) shows
that the structure is distorted so that an α value cannot be defined. The profile near
the core is somewhat steeper than that for the core at α = 1.85, but, the rest of the
profile is broader. For a model of an isolated vortex composed of two circular patches
of uniform vorticity, the vortex becomes stable if the width of the outer annulus is
sufficiently broad (cf. Flierl 1988; Kloosterziel & Carnevale 1992). The prediction for
the two-patch system is that the vortex is stable if d/a > (1 +

√
2)1/2 where d is the

radius of the outer patch and a is the radius of the inner patch. This can also be
restated in terms of the jump in vorticity from the core to the anulus. Stability requires
(ω0−ω1)/ω0 < 1+1/

√
2. Thus if the annulus is broad enough or, equivalently for the

two-patch system, if the vorticity amplitude in the annulus is sufficiently small, then
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the structure is stable. The vorticity distribution shown in figure 9(a) is somewhere
between a two-patch vortex and the continuous profile defined by α. Unfortunately,
there is no simple criterion that we can give for stability in terms of any obvious
measure of the overall steepness of the profile. In particular, there does not appear
to be any simple way to relate α with d/a for the two-patch system.

In figure 9(b), we show the result for the case with N = 0.175, which is in the
regime predicted to be centrifugally unstable by the Rayleigh criterion. In figure
4(b), we saw evidence that the centrifugal instability does indeed occur for this value
of N. However, that figure also shows that the strength of the instability is very
limited, with |ωθ|max never reaching more than three times its initial value. Given
that the initial perturbation is very weak, it seems that the instability is arrested
by the presence of viscosity and does not disrupt the vortex, which evolves like a
two-dimensional structure to form a tripole. Increasing N to 1

3
, we observe essentially

the same behaviour as that for the anticyclone shown previously in figure 7(a),
corresponding to N = − 2

3
. Both the N = 1

3
and the N = − 2

3
cases show the formation

of very symmetric and stable tripoles. As |N| is increased further from these values,
the flows for cyclone and anticyclone look more and more similar (we have tested up
to |N| = 2), in accord with the Taylor–Proudman theorem.

An important point can be made concerning the difference between the tripole
formation and the double-dipole instability. Compare figures 7(a) and 7(c) for the
evolution of the tripole at N = − 2

3
and for the double-dipole instability at N = − 1

3
.

At time t = 200, we note that although both positive and negative relative vorticity
amplitudes have decayed in both cases over the course of the simulation, the relative
decay in the core and satellites is very different in the centrifugally stable and unstable
cases. In the case that produced the tripole, the magnitude of vorticity in the satellites
has fallen to about 1/8 that in the core – Kloosterziel & van Heijst (1991) say on
page 9 that ‘the amplitudes of the vorticity of the core and the satellites differ by
at least a factor of 5 shortly after they have formed’, which is in accord with our
simulations. In the vortex which evolves according to a double-dipole instability, the
magnitudes of vorticity in the core and the satellites are roughly the same. Since in
the initial condition (with an α = 3 profile), the ratio of vorticity magnitude in the
annulus to that in the core is about 1/6, it appears that in this case the centrifugal
instability acts to greatly enhance the magnitude of the negative relative vorticity,
that is the vorticity of the annulus, compared to the positive relative vorticity of the
core. This is a significant finding, because it means that these differences in relative
vorticity magnitudes can be produced entirely by centrifugal instability, and do not
require nonlinear Ekman effects as was previously thought.

At this point, we have seen that centrifugal instability alone can steepen an
anticyclonic profile and initiate the double-dipole instability. Thus it is tempting to
consider this the mechanism responsible for the difficulty of producing anticyclones in
the laboratory. However, if centrifugal instability were the only mechanism inhibiting
the formation of stable anticyclonic tripoles, it should be possible to produce them if
N is sufficiently high. In fact recently such a tripole has been successfully created by
Satijn & van Heijst (personal communication, 1998). On the other hand, Kloosterziel
& van Heijst (1991) noting the difficulty in producing a stable anticyclonic vortex
even for relatively high N suggested that the dynamics of the Ekman layer may play
a role in inhibiting the formation of stable tripoles from anticyclones. This is a point
we will return to later.

We will end this section with a summary of its main results. We were able to
produce numerically the full evolution of an unstable vortex including the centrifugal
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instability, the triggering of the barotropic instability by the centrifugal instability,
the production of a multipolar state and the simultaneous relaxation to columnar
structures for all of the vortices (e.g. see figure 15c). In a series of simulations with
different values of N, we found that the flows did exhibit centrifugal instability in
a range approximating that predicted by inviscid theory (−1 < N < Ncr), but the
instability was clearly inhibited for N . −0.75, probably due to viscous effects. We
found that the centrifugal instability involved the formation of ‘rib’ vortices that
enhanced axial vorticity gradients. In the anticyclonic case, the centrifugal instability
steepens the gradient of vorticity between the core and annulus of the primary vortex,
and so encourages double-dipole and other instabilities of higher azimuthal mode
number, whereas for the cyclone, the centrifugal instability effect occurs further away
from the core and so cannot promote the high-order instabilities efficiently. In fact,
for cyclones we have presented some evidence that the centrifugal instability may
even broaden the annulus of opposite signed vorticity, which would be a stabilizing
effect. Of all the effects that break the symmetry between cyclones and anticyclones
in the laboratory experiments, this centrifugal instability may be the most important.

4. Three-dimensional simulations with no-slip boundary conditions
An important aspect of the laboratory experiments that has not been dealt with

by the periodic boundary condition simulations discussed above is the presence of
the bottom boundary of the tank. This boundary causes the formation of a bottom
boundary layer, an Ekman layer, which will significantly enhance the rate of decay of
the vortices (cf. Pedlosky 1979). Also, we might expect that any inertial wave radiation
emanating from the vortex will be damped more rapidly in the presence of a no-slip
wall because reflection from such a wall would produce large gradients of vorticity
on which viscosity would act more effectively (cf. Greenspan 1980).

As a preliminary investigation of the effects of the bottom boundary, we performed
a series of simulations with α = 3, replacing the top boundary layer in the simulation
with a free-slip condition. In one set of simulations we replaced the bottom boundary
with a free-slip boundary and in another with a no-slip boundary. Figure 10 shows a
comparison at time t = 200 of the vorticity fields for simulations in the case N = −0.5,
all starting with the same initial condition, but having different boundary conditions.
The result in the case where the boundaries on top and bottom are both free slip (10b)
is very similar to the case with periodic boundary conditions (10a). More generally
we find that although the change from periodic boundaries to free slip may change
some of the timing of the evolution, there is not much qualitative change.

Figure 10 also shows that compared with the periodic boundary condition case,
there is considerably more damping of the field in the no-slip case, and indeed the
anticyclonic vortex shown in figure 10(c) does not reach the tripolar state. It appears
that in this case, and for all N < −0.5, the barotropic instability is arrested by the
damping effect of the bottom Ekman layer. In contrast, under the same conditions
(|N| = 0.5, α = 3), the cyclonic vortex does form a tripole with the no-slip boundary,
as in the periodic boundary condition case. For the cyclones, even with the bottom
Ekman layer, the sequence of predictions from two-dimensional barotropic instability
studies seem to hold approximately. In other words, as the α of the initial condition
is increased, there is a sequence of final structures that goes from stable monopole to
stable tripole to unstable tripole. This is illustrated in in figure 11, where we show the
results at t = 200 for α = 2, 3 and 3.5 (with N = 1

3
). Although the two-dimensional

inviscid studies predict the transition between monopole and stable tripole should
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(a) (b) (c)

Figure 10. Contours of ωz on mid-height planes (∆ωz = 0.025) for N = −1/2 at t = 200 for
different boundary conditions along the vertical direction: (a) periodic, (b) free slip, (c) no slip
(α = 3).

(a) (b) (c)

Figure 11. Contours of ωz on mid-height planes (∆ωz = 0.025) for N = 1/3 at t = 200 with a
no-slip bottom boundary condition. (a) α = 2, (b) α = 3, (c) α = 3.5.

occur around α = 1.85, the transition occurs at a somewhat higher α in the three-
dimensional simulations with viscosity. We should also note that for α = 3.5, the
critical value of N for centrifugal instability is 0.36; however, as in the periodic
boundary condition case, there seems to be little effect of centrifugal overturning on
the evolution of the barotropic modes when N is close to the stability boundary. In
figure 12 we will see another example of the formation of an unstable cyclonic tripole,
but for a centrifugally stable value of N.

In order to understand better the difference between the effect of the bottom
boundary in the anticyclonic case and the cyclonic case, we performed a series of
simulations with α = 3.5, in which case the barotropic instability is not completely
damped for N 6 −0.5. Four representative cases are shown in figure 12. We have
included two cases with high values of |N| (i.e. N = ±2), which will be of use below
in discussing the currently available theory of nonlinear Ekman layers, which holds
only for large N.

In figure 12(c), we see the formation of an unstable tripole at N = 0.5. This
N is certainly in the centrifugally stable range since for α = 3.5 we have from
equation (2.10) that Ncr = 0.36. Thus in this case, we have an example of the
formation of an unstable cyclonic tripole without the effect of centrifugal instability.
In the laboratory experiments discussed above, unstable cyclones usually evolved
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into stable tripoles; however, van Heijst et al. (1991) show an example of a cyclone
that does become an unstable tripole which then undergoes double-dipole instability.
To explain the difference between this case of unstable cyclonic tripole formation
and the usual stable cyclonic tripole formation, van Heijst et al. (1991) pointed out
that the scatter plot of ψ vs. ω in the core of the cyclonic vortex in this case was
different from that in the more typical case of the stable tripole. They suggested
that it was the anomalous structure of the core itself that led to the unstable
tripole formation. In contrast, our example in figure 12(c) requires nothing other
than initially having a sufficiently high value of α for the formation of an unstable
tripole.

For higher values of N, the damping effect of the Ekman layer becomes very
important. At N = 2, we see that by t = 200 the amplitudes of both the positive
and negative vorticity have decreased considerably more than in the lower N cases.
A measure of the decay rate of vortices due to the Ekman layer is the Ekman time
scale given by equation (2.7), which can be rewritten in terms of the advective time
scale as

tE/ta =
σ

D

(
2Re

N

)1/2

. (4.1)

For these experiments, our aspect ratio σ/D is 1/π and Re = 2500. Thus the final
time shown in the figure t = 200 corresponds to 0.64tE for N = 0.5 but 1.3tE for
N = 2. Thus it is natural to see considerably more damping the larger the values
of N. Also, since the time scale of the barotropic or two-dimensional instability is
controlled by the advective time scale, it is possible for a rapid Ekman decay to arrest
the barotropic instability. In the N = 2 (figure 12d) example, a tripolar structure
barely forms by t = 200, and although somewhat asymmetrical, it seems to decay as
a weak tripole – we followed its evolution up to t = 250.

In figure 12(b) (N = − 1
3
), we have a typical double-dipole instability initiated by the

centrifugal instability. In figure 12(a), we see the formation of a weak but symmetrical
tripole for N = −2. Since this is initially an α = 3.5 structure, we need to understand
why it seems to follow a symmetrical tripole formation route rather than the unstable
tripole to double-dipole route. Also since |N| = 2 represents a relatively high rotation
rate, and centrifugal instability plays no role here, we need to understand why the
evolution of the N = −2 is different from the N = +2 case since in pure two-
dimensional theory the evolutions would be identical. Here we can have recourse to
the theory developed for the nonlinear Ekman effect for axially symmetric vortices. If
the equations of evolution are expanded for large N, the lowest order approximation
is the linear Ekman decay, which can be expressed as a simple Newtonian damping
in the equations of motion (cf. Pedlosky 1979), and which is the form that appears
in quasi-geostrophic theory. The mechanism which produces the damping is that the
boundary layer on the bottom no-slip surface gives rise to a secondary (i.e. first order
in 1/N) circulation, which includes a weak upward/downward flow at the bottom
wherever the z-vorticity is positive/negative. This results in a compressing/stretching
of the vortex column with a consequent reduction of the magnitude of the vorticity.
This result is valid for sufficiently high N, while for finite N there are corrections
to the simple linear decay law. Wedemeyer (1964) provides a theory for the next
order correction in 1/N to the simple linear decay. A version of this theory for the
evolution of isolated vortices is given in Kloosterziel & van Heijst (1992) and Maas
(1993). The prediction is that vθ , the azimuthal velocity field of the vortex, will decay
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Figure 12. Contours of ωz on mid-height planes from simulations with the no-slip condition at the bottom boundary (∆ωz = 0.025). From left to right
(a) N = −2, (b) N = −1/3, (c) N = 1/2, (d) N = 2; from top to bottom t = 100, t = 150, t = 200.
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Figure 13. Velocity profiles for times t = 50, 100, 150, 200: , theory; , simulations at
α = 3.5 for (a) N = −2, (b) N = 2.

according to

∂vθ

∂t
= −(1 + ωz/N)vθ +

tE

td

∂ωz

∂r
, (4.2)

where td is the diffusive time scale given by td = (σ2/ν)1/2 (see Kloosterziel & van
Heijst 1992). The last term simply represents horizontal diffusion due to viscosity.
This equation is in non-dimensional form with the time scaled by the Ekman time
scale tE and not by ta.

If the diffusive time scale is sufficiently long compared to the Ekman time scale,
the diffusive term may be neglected, and the resulting equation,

∂vθ

∂t
= −(1 + ωz/N)vθ, (4.3)

represents the Ekman-layer effect. The first term on the right-hand side represents
linear Ekman decay, familiar from quasi-geostrophic theory (cf. Pedlosky 1979). This
term alone would only cause the profile to decay in amplitude everywhere at the same
rate with no change in form. The nonlinear term, inversely proportional to N, is the
correction for finite N introduced by Wedemeyer (1964). For anticyclones/cyclones,
this term decreases/increases the decay rate. According to (4.3), the velocity profiles for
anticyclones/cyclones evolve with the velocity maximum moving to a smaller/larger
radius. The steepness of an anticyclone/cyclone will also decrease/increase. In fact,
if we initialize equation (4.3) with a vorticity profile given by (2.1) the Ekman
dynamics will cause the profile to evolve lower/higher gradients of vorticity in the
anticyclonic/cyclonic case. Thus the effect of the nonlinear Ekman dynamics is to
force anticyclones toward a more stable velocity profile and cyclones toward a more
unstable profile.

Since the Wedemeyer theory is strictly valid only for axisymmetric flows at high |N|,
we turned to our simulations at |N| = 2 to consider a detailed comparison. Comparing
figures 12(a) and 12(d), we could see that in agreement with the Wedemeyer effect,
the cyclone has decayed faster than the anticyclone. For a more detailed comparison
with the theory, we took the vθ field at the midpoint in the vertical direction (i.e.
z = 1

2
π) and averaged in θ, thus producing a profile v̄θ(r) that we could compare to

the results from (4.3). Quantitatively, the matches with theory were not very good.
Qualitatively, the prediction about the direction of the shift of the velocity maximum
holds up to about t = 100 = 0.64tE . However, the prediction about the steepening of
the velocity profile of the cyclonic vortex does not hold, since instead both cyclonic
and anticyclonic profiles become more shallow.

On further investigation, we found a much better match between the theory and
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Figure 14. Velocity profiles vθ(r). Each profile is normalized so that the maximum value is 1 and
the position of the maximum is at r = 1. In each panel, the solid curve is the initial condition,
while the dashed (dotted) curve is the profile at time t = 100 for the cases N = +2 (N = −2). Panel
(a) shows the theoretical predictions and panel (b) gives the azimuthally averaged results from our
simulations: ( , t = 0; , t = 100 for N = 2 , t = 100 for N = −2)

experiment when we included the horizontal diffusion term in equation (4.2). The
coefficient of the horizontal diffusion can be rewritten as

tE

td
=
D

σ

√
2(

Re|N|)1/2
. (4.4)

Thus for our case with |N| = 2 and Re = 2500, this ratio is tE/td ≈ 0.063, and this, it
seems, is not small enough to neglect the explicit diffusive term in (4.2). In figure 13,
we show the comparison between the theory with this diffusive term and the three-
dimensional numerical simulations for |N| = 2 at times t = 50, 100, 150, and 200; that
is for t = 0.32tE, 0.64tE, 0.95tE , and 1.3tE . The correspondence is quite good for all
times shown in the anticyclonic case, while for the cyclone, the comparison is good for
the early and late times, with however some discrepancy for the intermediate times.
Part of the discrepancy for the cyclonic case must be due to the early development
of a tripolar anomaly which cannot be dealt with in the Wedemeyer theory.

The particularly pertinent prediction made by the Wedemeyer theory without the
lateral diffusion that the cyclone profile will become steeper, may not hold if the
diffusive term is important. To demonstrate this, we show in figure 14(a) the initial
condition (the α = 3.5 profile), and the t = 100 predictions for both cyclone and
anticyclone. The curves are all normalized to have the same maximum value at the
same radius to make them easier to compare. Under the action of both the nonlinear
Ekman effect and the lateral diffusion, both cyclonic and anticyclonic profiles have
become shallower. This is also seen in the data from the simulations shown in figure
14(b). This is in contrast to the results found in Kloosterziel & van Heijst (1992)
where cyclonic vortices with an α = 2 profile were found to steepen in the laboratory
experiments. In that work, however, the ratio tE/td was 4 to 5 times smaller than that
used in the present study. In any case, we must conclude that an anticyclone with a
stable profile (sufficiently small α) cannot be destabilized by the action of a nonlinear
Ekman layer, and an initially unstable profile can be made stable by this effect. A
cyclone can be destabilized by the Ekman-layer effect only if the lateral diffusion time
scale is sufficiently longer than the Ekman time scale, otherwise lateral diffusion will
dominate and make the cyclone more stable.

Under the conditions in our simulations, for |N| = 2, the cyclonic profile nearly
retained its initial steepness while the anticyclone broadened considerably. This alone
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(a) (b) (c)

Figure 15. Iso-concentration contours of passive scalar in vertical sections passing through the
point where ωz takes its most negative value. (a) N = −2, (b) N = +2, (c) N = −0.5. From top to
bottom t = 50, t = 100, t = 150, t = 200.

would suggest the possibility at α = 3.5 for the cyclone to form an unstable tripole
that breaks into dipoles, while it seemed in our example in figure 12(d) that the
viscous decay was too rapid to allow the formation of an unstable tripole to proceed
(the evolution was followed up to time t = 250). On the other hand, since the
nonlinear Ekman effect causes the anticyclone to broaden, it is consistent to see the
anticyclone transform into a stable tripole as in figure 12(a). For α = 3 the anticyclonic
broadening can be sufficient to stop the two-dimensional tripole formation with the
structure remaining axially symmetric (as we saw in figure 10c), while the α = 3
cyclone, maintaining its steepness, could become a tripole (as we saw in figure 11b).

The formation of the Ekman layer at the bottom of the vortex sets up a secondary
circulation of flow which can be observed in the advection of a passive scalar. We have
performed simulations with a passive scalar, with the ratio of kinematic viscosity to
scalar diffusivity set at 1. In the laboratory experiments, the diffusivity of dyes typically
used is three orders of magnitude smaller than the kinematic viscosity. Unfortunately
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we cannot use such small diffusivity and still have the scalar field well resolved in
our simulations. Even though our scalar field diffuses more rapidly than the dye in
the tank, we believe we have been able to capture the important effects qualitatively.
In figure 15, we show the evolution of a passive scalar field. The scalar was initially
uniformly distributed within the core of the vortex, with a smooth transition to zero
concentration in the negative-vorticity annulus, reaching zero about one third of the
way between the points where the vorticity vanishes and where it is most negative.
Comparing figures 15(a) (N = −2) and figure 15(b) (N = +2), it is evident that for the
anticyclone/cyclone there is a radial outflow/inflow of fluid in the bottom boundary
layer since the contour lines of the scalar, which are initially all vertical, bow out/in
at the bottom of the anticyclone/cyclone. Note that in the cyclonic case, the resulting
upward flux of passive scalar at the bottom continually raises the level of dye away
from the bottom. This phenomenon is observed in the laboratory experiments when
viewed from the side. Also, when viewed from above, it is possible to see that dye
concentrated near the bottom of the tank will be drawn into a cyclone and not
an anticyclone. A good illustration of this is given in Carnevale, Velasco Fuentes
& Orlandi (1997b, figure 12). At the upper boundary we are imposing a free-slip
condition on the flow and a non-diffusive condition (i.e. the normal derivative of
scalar vanishes). In the laboratory experiments, however, there will also be a weak
Ekman layer due to the water–air interface whose effect is not represented here. We
are also neglecting the deformation of the free surface due to the presence of the
vortex (cf. Maas 1993).

Figure 15(c) is shown as a representative case of the evolution of the scalar when
there is centrifugal instability. Here in the scalar field at time t = 100 there is evidence
of the overturning motion typical of this instability. By time t = 150 side cyclones have
formed. It appears that passive scalar from the core anticyclone is being transferred
through the bottom Ekman layer into the cyclones, which makes sense from the
point of view of the simple linear Ekman-layer theory for the induced secondary
circulation (i.e. axially downward in the anticyclone, radially out from the centre of
the anticyclone in the Ekman layer, radially in toward the centres of the cyclones in
the Ekman layer, and upward into the cyclone).

According to linear Ekman-layer theory (cf. Pedlosky 1979), the thickness δE of the
layer should scale as

δE = (ν/|Ω|)1/2, (4.5)

which can alternatively be written in terms the horizontal scale of the vortex as

δE = σ

(
2

|N|Re
)1/2

. (4.6)

Thus for the case of |N| = 2, with Re = 2500, δE = σ/50. We are able to resolve the
Ekman layer in the simulations by using a variable mesh spacing with a relatively
high density of grid points in the thin Ekman layer. In figure 16, we graph the radial
velocity as a function of z at a radius of r = 0.58, which corresponds roughly to the
position where vr takes its maximum value (see figure 17) in the cases N = ±2 at
time t = 200. As predicted by linear Ekman theory, the radial velocity in the Ekman
layer is positive/negative for the anticyclone/cyclone. The radial velocity is maximum
in magnitude near z = δE as given by equation (4.6). We have illustrated the grid
mesh size by putting dots at the appropriate radii on the curve for the anticyclonic
case. Including the boundary, there are 10 grid points from the wall to the point
of maximum radial velocity, and another 18 in the region where the radial velocity
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Figure 16. Radial velocity vertical profiles for , N = −2 and , N = +2. The profiles
are logarithmic to emphasize the Ekman boundary layer region. The profiles are taken at r = 0.58,
this position corresponding to the point of maximum of the radial velocity. On the solid lines the
dots indicate the distribution of the computational grid points.

(a)

(b)

Figure 17. Contours of vr at t = 200 in vertical sections that pass through the point where ωz
takes its most negative value; (a) N = −2, (b) N = +2 with ∆vr = 0.001,

decays to the interior value. The graphs give results that are qualitatively in accord
with Ekman layer theory. Outside the Ekman layer, for the cyclone/anticyclone the
radial velocity is weakly positive/negative, representing a slow outward/inward flow
over most of the vortex column.

We also illustrate the radial velocity field over an entire vertical cross-sectional
plane in figure 17 for the cases N = ±2. The orientation of the cross-section was
chosen to pass through the position where |ωr| achieves its maximum value. Note
that on the scale of these plots the Ekman layer is so thin that it cannot be observed.
The vertical velocity above the Ekman layer is small, with |vr| being at least an order
of magnitude smaller than |vθ| at the same position. Above the Ekman layer, the flow
is outward/inward in the cyclone/anticyclone as predicted by linear Ekman theory.

In summary, we have examined in this section the effects of the Ekman boundary
layer on the evolution of isolated vortices. Linear Ekman-layer theory alone is unable
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to produce a quantitative match to the effect of the actual Ekman layer for the vortices
unless N is very large. In the regime examined here, |N| 6 2, the nonlinear Ekman
effect introduced by Wedemeyer (1964) must be taken into account. This nonlinear
effect causes cyclones to decay faster than anticyclones, as observed in our simulations.
Also, in inviscid theory, the presence of this nonlinear effect means that as it evolves,
the vorticity profile will become steeper/shallower for cyclones/anticyclones. Thus,
the Wedemeyer effect cannot be responsible for triggering the barotropic instability
in anticylones with initially stable profiles. In our simulations, we found a very poor
quantitative match to the inviscid Wedemeyer theory predictions. The agreement was
improved substantially by adding viscous effects to the theory. For the Reynolds
number corresponding to our simulations, it turned out that both cyclones and
anticyclones broaden in spite of the tendency of the inviscid Wedemeyer effect.
Finally we showed evidence for the secondary flow induced by the Ekman layer, that
is, in accord with linear Ekman layer theory, there is a flow toward (away from) the
axis of the cyclone (anticyclone) in the Ekman layer. By mass conservation, this is
accompanied by a corresponding outward (inward) radial flow from (toward) the axis
of the cyclone (anticyclone) above the Ekman layer.

5. Discussion
In our investigation, we have tested several hypotheses based on laboratory obser-

vations concerning the differences between the evolution of cyclones and anticyclones
in rotating flow. Here we review the relationship of our results to these hypotheses.

To begin with, it may be helpful to summarize briefly in table form the results of
the two most important series of simulations that we presented above.

For the periodic boundary condition simulations with α = 3 we have

N

−1,−0.75 tripole formation not preceded by centrifugal instability
−0.66 weak centrifugal instability, tripole formation
−0.5 centrifugal instability, double-dipole instability
−0.33 centrifugal instability, transient quadrupole, double-dipole instability
−0.1, 0 centrifugal instability, turbulence

0.1 centrifugal instability, monopolar isolated vortex
0.175 weak centrifugal instability, tripole formation
0.33, 0.5, 1 no centrifugal instability, tripole formation

while for the simulations with a no-slip bottom boundary condition and α = 3.5
we have

N

−2,−1 tripole formation not preceded by centrifugal instability
−0.33 centrifugal instability, double-dipole instability

0.33 centrifugal instability, double-dipole instability
0.5 no centrifugal instability, unstable tripole formation
1, 2 no centrifugal instability, stable tripole formation

One of the main ideas that we tested was that centrifugal instability may be
responsible for triggering the double-dipole or higher-order instabilities for anti-
cyclonic vortices. Eliminating the Ekman layer effect from the problem (by using
periodic boundary conditions), we were able to isolate the effect of the centrifugal
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instability on the evolution of the vortices. We showed that beginning with a vorticity
profile that is too ‘shallow’ (α = 3) to result in the double-dipole centrifugal instability,
the centrifugal instability produced ‘rib’ vortices that by vortex stretching enhanced
the gradient of vertical vorticity, thus producing an azimuthal velocity profile that
is sufficiently ‘steep’ to undergo double-dipole instability. The example that we gave
in figure 7(c) even shows the formation of a transitory quadrupole state. We saw
that this centrifugal instability was an effective means of producing the double-dipole
instability only for a range of values of the rotation number more limited than the
range of centrifugal instability. For more negative N, stable tripoles form. Note that
stable tripoles were not observed to form from anticyclones in any of the laboratory
experiments reported in the literature – a point to which we will return below. An-
other surprise was that the centrifugal instability in the cyclonic case with the same
initial condition as in the anticyclonic case (α = 3) did not produce the double-dipole
instability. Instead, the centrifugal instability broadened the annulus of vorticity sur-
rounding the core, thus resulting in a stable monopolar profile. The reason for this
is not clear, especially when comparing two cases with very small |N|, as in figures
7(a) and 9(a). In the anticyclonic case, the rib vortices propagate deeply into the core,
while in the cyclonic case they appear to be confined to the annulus (see figures 5c
and 5d), even though the regions of instability are initially roughly the same (see
figure 2).

Furthermore, by performing these periodic boundary condition simulations, we
were able to refute a hypothesis concerning the relative amplitudes of vorticity in
the tripole and double-dipole end states. The vortices start with a large difference in
the magnitude of vorticity in the core of the vortex relative to the vorticity in the
annulus. After tripole formation, this difference is preserved in that the magnitude of
vorticity in the satellites is much lower than that in the core. For the double-dipole
formation, however, the magnitude of the vorticity is comparable in all vortices. We
have found that the centrifugal instability alone can produce this effect in the double-
dipole instability. Thus it is not necessary to invoke the Ekman layer effect within the
confining hollow cylinder in the laboratory experiments to explain this phenomenon
(cf. Kloosterziel & van Heijst 1991).

In the simulations with Ekman damping, we were able to reproduce, at least
qualitatively, all of the forms of instability observed in the experiments by choosing a
sufficiently ‘steep’ initial profile α = 3.5. Of particular interest is the formation of the
unstable tripolar vortex from a cyclone (e.g. figure 12c). This can also be achieved for
the periodic boundary condition case. It simply requires starting from a sufficiently
steep profile. This is at odds with the suggestion given by van Heijst et al. (1991),
that the formation of the unstable tripole was linked to the initial presence of a core
vortex which itself was unstable. It seems more likely that in the case they reported
the initial profile was steep and the effect of the satellites on the core then induced the
observed unstable core structure, and not that the core was initially in itself unstable.
At least we have shown that there is no need for a separate instability concerning the
core to account for the result.

We have also addressed the question of the nonlinear Ekman layer effects related
to the Wedemeyer (1964) equation by looking at two cases of relatively high rotation
(|N| = 2). Since a nonlinear Ekman layer can make cyclonic vorticity profiles steeper,
it was an attractive candidate for explaining why in the laboratory experiments it
seems that cyclones always went unstable. However, the effect of horizontal diffusion
of vorticity tends to broaden the vorticity profile and hence competes with the Ekman
effect in this case. We showed that for reasonable values of the horizontal diffusion, the
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combined effect of the Ekman layer and the horizontal diffusion simply maintained
the steepness of the cyclonic profile. Thus to induce the tripole formation from a
cyclone under these conditions requires having a sufficiently steep profile initially. To
see the effect of the Ekman layer on steepening the vortex would require a much
higher Reynolds number or much wider vortex than we have used (see (4.4)).

We found that the nonlinear Ekman effect according to the Wedemeyer (1964)
equation makes the anticyclonic profiles shallower and hence more stable. Thus, as
we showed in figure 9(c), it is possible to start with a barotropically unstable profile
and have it stabilized by this effect, resulting in a monopolar final state. Also we note
that we have observed the formation of a stable tripole from a barotropically unstable
anticyclone. So, it seems that the Ekman layer effect cannot play a role in destabilizing
anticyclones. Thus we are left to ask why were anticyclones always unstable in the
laboratory experiments reported in the literature, and why their instabilities never
produced a stable tripole. Our simulations would suggest two causes for this: either
the initial profiles were too steep, or the centrifugal instability was too strong in the
cases examined. Recently, the formation of a stable tripole from an anticyclone has
been observed (Satijn & van Heijst, personal communication, 1998) lending support
to this view. Our simulations did not address the formation of the initial condition in
the laboratory, but this would be an interesting study in itself.

Our study was by necessity restricted in two regards that are undoubtedly of some
importance in questions of vortex stability. One of these concerns the aspect ratio
σ/D, which we have set at 1/π. In the examples of centrifugal instability that we have
analysed (e.g. those cases shown in figure 5), the vertical scale of the instability was
somewhat smaller than σ. In those cases, D was probably sufficiently large to not have
had a significant effect on the unfolding of the instability. However, one may expect
that with D comparable to or smaller than σ the growth of the instability would be
hampered. Thus a large aspect ratio may be stabilizing. The second effect that we
did not deal with was that of free surface deformations. If one introduces gravity
into the problem and allows the height of the upper surface to evolve, then cyclones
and anticyclones will be affected differently. For example, the free surface will be
depressed above cyclones and elevated above anticyclones. The degree to which free
surface effects will be important can be measured by the Froude number, which for
our basic vorticity profile we may define as F = ω0σ/(gD)1/2. In the experiments
described in Kloosterziel & van Heijst (1991, 1992), the Froude number so defined
was small (O(0.1)), and we would suspect that the free surface effect played only a
small role in the evolution. Maas (1993) shows that when F is not small, free surface
effects will make the vorticity profile spread out which would suggest an improvement
in stability, but all the implications of allowing the free surface to vary are not clear
at this time. In any case, it does appear that the effects would be greater the larger
the value of the aspect ratio.

Finally, we hope that the research reported here will stimulate additional laboratory
studies, and we would encourage the use of three-dimensionalization visualization
techniques which would be very useful in comparing with numerical simulations.
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